The kinetoplast duplication cycle in Trypanosoma brucei is orchestrated by cytoskeleton-mediated cell morphogenesis.
نویسندگان
چکیده
The mitochondrial DNA of Trypanosoma brucei is organized in a complex structure called the kinetoplast. In this study, we define the complete kinetoplast duplication cycle in T. brucei based on three-dimensional reconstructions from serial-section electron micrographs. This structural model was enhanced by analyses of the replication process of DNA maxi- and minicircles. Novel insights were obtained about the earliest and latest stages of kinetoplast duplication. We show that kinetoplast S phase occurs concurrently with the repositioning of the new basal body from the anterior to the posterior side of the old flagellum. This emphasizes the role of basal body segregation in kinetoplast division and suggests a possible mechanism for driving the rotational movement of the kinetoplast during minicircle replication. Fluorescence in situ hybridization with minicircle- and maxicircle-specific probes showed that maxicircle DNA is stretched out between segregated minicircle networks, indicating that maxicircle segregation is a late event in the kinetoplast duplication cycle. This new view of the complexities of kinetoplast duplication emphasizes the dependencies between the dynamic remodelling of the cytoskeleton and the inheritance of the mitochondrial genome.
منابع مشابه
Giant FAZ10 is required for flagellum attachment zone stabilization and furrow positioning in Trypanosoma brucei
The flagellum and flagellum attachment zone (FAZ) are important cytoskeletal structures in trypanosomatids, being required for motility, cell division and cell morphogenesis. Trypanosomatid cytoskeletons contain abundant high molecular mass proteins (HMMPs), but many of their biological functions are still unclear. Here, we report the characterization of the giant FAZ protein, FAZ10, in Trypano...
متن کاملTrypanosoma brucei Polo-like kinase is essential for basal body duplication, kDNA segregation and cytokinesis
Polo-like kinases (PLKs) are conserved eukaryotic cell cycle regulators, which play multiple roles, particularly during mitosis. The function of Trypanosoma brucei PLK was investigated in procyclic and bloodstream-form parasites. In procyclic trypanosomes, RNA interference (RNAi) of PLK, or overexpression of TY1-epitope-tagged PLK (PLKty), but not overexpression of a kinase-dead variant, result...
متن کاملSAS-4 Protein in Trypanosoma brucei Controls Life Cycle Transitions by Modulating the Length of the Flagellum Attachment Zone Filament.
The evolutionarily conserved centriole/basal body protein SAS-4 regulates centriole duplication in metazoa and basal body duplication in flagellated and ciliated organisms. Here, we report that the SAS-4 homolog in the flagellated protozoan Trypanosoma brucei, TbSAS-4, plays an unusual role in controlling life cycle transitions by regulating the length of the flagellum attachment zone (FAZ) fil...
متن کاملAEE788 Inhibits Basal Body Assembly and Blocks DNA Replication in the African Trypanosome.
Trypanosoma brucei causes human African trypanosomiasis (HAT). The pyrrolopyrimidine AEE788 (a hit for anti-HAT drug discovery) associates with three trypanosome protein kinases. Herein we delineate the effects of AEE788 on T. brucei using chemical biology strategies. AEE788 treatment inhibits DNA replication in the kinetoplast (mitochondrial nucleoid) and nucleus. In addition, AEE788 blocks du...
متن کاملMicrotubule polarity and dynamics in the control of organelle positioning, segregation, and cytokinesis in the trypanosome cell cycle
Trypanosoma brucei has a precisely ordered microtubule cytoskeleton whose morphogenesis is central to cell cycle events such as organelle positioning, segregation, mitosis, and cytokinesis. We have defined microtubule polarity and show the + ends of the cortical microtubules to be at the posterior end of the cell. Measurements of organelle positions through the cell cycle reveal a high degree o...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Molecular and cellular biology
دوره 31 5 شماره
صفحات -
تاریخ انتشار 2011